Master of Science in Mechanical Engineering (MSME)

The Master of Science in Mechanical Engineering (MSME) program consists of 30 credit hours of graduate level coursework OR 24 credit hours plus 6 credits of Master’s Thesis. While this page is geared for those wishing to have a campus experience, be sure to also visit our online option. Students interested in our full-time campus experience are able to complete all degree requirements below, including the optional thesis, in as little as 18 to 24 months. See admission requirements and application information below.

Degree Requirements
  1. The following four courses are required (12 credits)
    1. MEEG 690: Intermediate Engineering Mathematics
    2. Three from the following list
      • MEEG 610: Intermediate Solid Mechanics
      • MEEG 620: Intermediate Dynamics
      • MEEG 630: Intermediate Fluid Mechanics
      • MEEG 640: Intermediate Heat Transfer
      • MEEG 621: Linear Systems
      • MEEG 683: Orthopedic Biomechanics
  2. Three additional graduate level mechanical engineering electives (9 credits)If pursuing the thesis option, six (6) credits of Master’s Thesis must be completed toward requirement B, with the final three (credits) chosen from the MEEG Core excluding those already used toward requirement A or MEEG graduate electives. If not pursuing the thesis option, all nine (9) credits must be chosen from remaining MEEG Core (see above) or MEEG graduate electives including the Graduate Certificate in Composites Manufacturing and Engineering.
  3. Three additional graduate level electives (9 credits)These graduate courses must be in engineering or mathematical, science or field related to student’s academic concentration. Courses must be selected with the documented approval of the department’s Graduate Committee.
  4. One semester of MEEG 600 seminar (0 credits)

See official program policy statement for details. For more information about the campus based program, contact

Requirements for Admission

The following minimum criteria apply:

  • A baccalaureate degree in mechanical engineering or in a closely allied field of science or mathematics.
  • An undergraduate grade point average in engineering, science and mathematics courses of at least 3.0 on a 4.0 scale.
  • International applicants: The TOEFL with a minimum of 100 on the IBT and a speaking score of 20. IELTS with a minimum score of 6.5 with no individual sub-score below 6.0 on the IELTS alternative.
  • Three letters of recommendation from former teachers or supervisors.
  • Resume
  • Statement of Purpose
  • Complete the ME graduate supplemental document

All items should uploaded into your graduate application. Admission is selective and competitive based on the number of well qualified applicants and the research opportunities available with the faculty. Meeting the stated minimum academic requirements does not guarantee admission. The acceptance of applicants who have already received a Master’s degree in engineering will be based on the above minimum criteria and the results of their graduate work.

Tuition & Deadlines

Tuition rates of all programs can be seen on the Graduate Office’s Tuition webpage.

Application Deadlines

MSME Fall admission:
January 31: Priority consideration for admission
July 31: Final deadline to apply

MSME Spring admission:
October 31: Priority consideration for admission
December 31: Final deadline to apply

Research at UD’s Mechanical Engineering

Biomechanical Engineering

Be a leader in solving biomechanical problems. The human body is a mechanical system that contains fluid flow, structural mechanics and evolving components—all central concepts in mechanical engineering.

Clean Energy

Develop new, clean and sustainable energy sources through novel energy conversion techniques, alternative energy storage methods and fuel-efficient vehicles, among other traditional methods of energy conversion.

Clean Environment

Reduce pollution through understanding transport and transformation of pollutants using mechanical engineering fundamentals such as fluid mechanics.

Composite Materials

Understand how materials respond, then use this information to optimally design everything from airplanes to artificial joint replacements using composite and advanced materials, nanotechnology and creative ingenuity.


The emergence of nanotechnology, which deals with the manipulation of materials at the atomic and molecular scales, has enabled the development of new materials and devices that exhibit novel properties.

Robotics & Control

Construct sophisticated robotic devices that, via advanced control systems, help humans in a multitude of situations, such as manufacturing plants, rescue squads, military operations and rehabilitation devices.

Recruitment Contacts

Graduate Recruitment
Phone: 302-831-2423

Graduate College
234 Hullihen Hall
Newark, DE 19716
Phone: 302-831-6824

AcademicsGraduate ProgramsMSME