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Center for Composite Materials (CCM)

Founded in 1974, CCM is an internationally recognized
Interdisciplinary center of excellence for composites
education and research

Three-Part Mission
— Educate scientists and engineers
— Conduct basic and applied research

— Transition technology
to industry

Host to 7 NSF/DoD Centers of Excellence since 1986

University/industry consortium — more than 3500 small,
medium and large companies have benefited from
partnerships with CCM
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Composites Manufacturing Science for
Reliability and Automation

Manufacturing simulations
are developed to fabricate
void free composites to
improve yield, and introduce
reliability and automation
Simulations are coupled with
Design and Optimization
Methodologies for Tailored
and Lean Manufacturing
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Voids are lodged in prepreg lamina and fiber tows
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Modeling and Simulation of out of Autoclave Processing
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¢ Find the permeability
distribution that will always fill
the given mold cavity, despite:
ALL possible disturbances —
such as race-tracking effect
around the edges

Race-tracking

Voids are dislodged and migrate towards vacuum pathways
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Coupling Design with Manufacturing

¢ Average fill data + Distribution media (DM) lay-out
for 64 scenarios design valid for ALL 25 scenarios
= + DM: highly permeable fibrous
layers to increase the preform
I~ permeability as placed on top of
d the preform
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Manufacturing Simulations to Optimize Composite Design

Effective thermal
conductivity of composites
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Advanced Nanocomposites for A

\
David Burris

Current MoS, solid lubricants coatings
are poisoned by water — seizure

UD PTFE nanocomposites:
environmentally insensitive, 10,000X
reduced wear compared to PTFE

This and 4 other candidate space
lubricants tested outside the ISS
First/only active MISSE experiment

UD PTFE nanocomposite in low
earth orbit over 2 years

Experimental Conditions:
average normal force ~TN

1 pin diameter: 3.725 mm

sliding speed ~13mm/s
average Temperature: 18.7°C

minimum temperature: -5°C
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Traction-Separation Behavior of -
Composite Interfaces

* Fiber matrix interface — potential ﬂ g
source of energy absorbing
mechanism £

» Opportunity to tailor interface to .
achieve optimum composite SO WoH

Displacement (um)

structural and ballistic performance

 Objective —to develop accurate
traction separation behavior of S-
glass/epoxy interface at all loading
rates at the micromechanical length
scale
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Multi-Scale Modeling of Kevlar KM2
Tows Subjected to Transverse Impact

* Kevlar flexible textile composites in
high velocity impact applications

* Role of fiber transverse properties
during impact not well understood

* Objective —to understand
fundamental fiber-level
meChanismS during impaCt tO . Single fiber transverse compression response — nonlinear and inelastic
establish materials-by- design PR P e Cheng, M. et al., International Journal of Solids and Structures, 2004

Jack Gillespie
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Nanotube Composites for "y
Infrastructure Health Monitoring
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Collaborators: T. Schumacher and J. McConnell (Civil Engineering)



Capacity (mAhg™)

Functional Nanocomposites P
for Energy Storage

Adhesive Conductors fr

om fragmented CNT macrofilms

Bifunctional adhesive conductor
(AC) from CNT film is, for the first
time, proposed and demonstrated
with a higher adhesive strength
than the conventional polymer
binder (PVDF)

Nanocomposites coupling AC with
active materials, e.g. LiMn,0O,
exhibit superior electrochemical
performance of the Li-ion Batteries
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High Strength and Multifunctional gl
Carbon Nanotube Fibers

CNTs (SWNT)

Length: 10 pum
Diameter: 1 nm
®ensity: 1.33 g/cm3

CNT fiber (shown)

Diameter: 60 um, Length: 10 cm
Tex: 1.4 g/km 10 pm

10 pm

New Electronic Materials
«+ Bendable, stretchable,

Fiber Mass: 0.14 mg twistable, deformable
Total CNT Volume: 1.05 (104) cm?3 <  Small resistance change

Single CNT Volume: 7.85 (10-18) cm3 _ o
CNT Fiber Characteristics

. 1013 . o
# of CNTs in the fiber: ~10 %  Electrical conductivity

% Flexibility




