

Composite Materials Research

Mechanical Engineering University of Delaware

Center for Composite Materials (CCM)

- Founded in 1974, CCM is an internationally recognized interdisciplinary center of excellence for composites education and research
- Three-Part Mission
 - Educate scientists and engineers
 - Conduct basic and applied research
 - Transition technology to industry

 University/industry consortium – more than 3500 small, medium and large companies have benefited from partnerships with CCM

FEATURE RECOGNITION

Composites Manufacturing Science for Reliability and Automation

Designed Part

Simulations are coupled with
 Design and Optimization
 Methodologies for Tailored
 and Lean Manufacturing

Coupling Design with Manufacturing

Manufacturing Simulations to Optimize Composite Design

Effective thermal conductivity of composites

Advanced Nanocomposites for Space Lubrication

MISSE 7: Materials International Space Station Experiments

- Current MoS₂ solid lubricants coatings are poisoned by water → seizure
- UD PTFE nanocomposites: environmentally insensitive, 10,000X reduced wear compared to PTFE
- This and 4 other candidate space lubricants tested outside the ISS

First/only active MISSE experiment

Traction-Separation Behavior of Composite Interfaces

- Fiber matrix interface potential source of energy absorbing mechanism
 Opportunity to tailor interface to
- achieve optimum composite structural and ballistic performance
- Objective to develop accurate traction separation behavior of Sglass/epoxy interface at all loading rates at the micromechanical length scale

Stress state of the interface due to residual thermal stresses and during crack propagation

700

600

400

300

200

100

0.1

(MPa)

Experimental

- - - FEA - Hyperelastic

Analytical eqn (1)

0.3

Nominal strain

0.5

UNIVERSITY of DELAWARE

Multi-Scale Modeling of Kevlar KM2 Tows Subjected to Transverse Impact

0.01

0.02

Displacement (mm)

0.03

- Kevlar flexible textile composites in high velocity impact applications
- Role of fiber transverse properties during impact not well understood
- Objective to understand fundamental fiber-level mechanisms during impact to establish materials-by-design

Single fiber transverse compression response – nonlinear and inelastic Cheng, M. et al., International Journal of Solids and Structures, 2004

Tow transverse impact short time scale response – significant transverse compressive strains

Nanotube Composites for Infrastructure Health Monitoring

Collaborators: T. Schumacher and J. McConnell (Civil Engineering)

Functional Nanocomposites for Energy Storage

Adhesive Conductors from fragmented CNT macrofilms

- Bifunctional adhesive conductor (AC) from CNT film is, for the first time, proposed and demonstrated with a higher adhesive strength than the conventional polymer binder (PVDF)
- Nanocomposites coupling AC with active materials, e.g. LiMn₂O₄ exhibit superior electrochemical performance of the Li-ion Batteries

High Strength and Multifunctional Carbon Nanotube Fibers

CNT fiber (shown) Diameter: 60 µm, Length: 10 cm 10 µm 10 µm

Fiber Mass: 0.14 mg Total CNT Volume: 1.05 (10⁻⁴) cm³ Single CNT Volume: 7.85 (10⁻¹⁸) cm³ # of CNTs in the fiber: ~10¹³

CNTs (SWNT)

Length: 10 µm Diameter: 1 nm Density: 1.33 g/cm³

10 nm

New Electronic Materials

- Bendable, stretchable, twistable, deformable
- Small resistance change

CNT Fiber Characteristics

- Electrical conductivity
- Flexibility