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Novel Materials for PEM Fuel Cells 
Suresh Advani

Novel metallic GDLTungsten Monocarbide catalystNovel composite membranes Design of flow channels using genetic algorithms 
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Durability Studies by 

Accelerated Stress Testing

• Humidity cycling

• Temperature cycling

• Freeze/thaw cycling of 

Nafion/MWCNT membrane

Temperature
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Mechanics of Fuel Cell Membranes 
Experimental Materials Characterization
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Numerical in-situ models

And Results

Nano-structural models

Michael Santare



UD Fuel Cell Hybrid Bus Program (2005-present)

Bus 1

Bus 2

Bus # Size Stack Batteries Operation

1 22-ft 20 kW Ni-Cad 2007

2 22-ft 40 kW Ni-Cad 2009

3 40-ft 60 kW Li-Ti 2014*

4 40-ft 80 kW Li-Ti 2014*

*Expected delivery

Cell voltage monitoring is an 

important diagnostic tool for fuel 

cell stacks and battery systems
Patent pending

Variable-area Ejector for 

Hydrogen Recirculation:

• Simple PI pressure feedback 

control system

• No moving parts

• Very low power consumption



Solar Hydrogen by 

Thermochemical Cycles 

Step 1: ZnO  Zn + ½ O2

Step 2: Zn + H2O  ZnO + H2

Concentrated 

sunlight

(2000 K)

A

B C

Tested at the Paul Scherrer 

Institute's high-flux solar 

simulator  in Villigen, 

Switzerland (May 2012 and 

March 2013) 

• 10 xenon-arc lamps delivering 

50kW at a peak radiative flux 

of 11,000 suns. 

Suresh Advani Ajay Prasad



H2 Storage with Solid-State Materials
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New Capacitive Mechanism for 

Energy Storage
Bingqing Wei

Charge Close-Packed Model on rGO/GO/rGO
A new energy storage mechanism 

(Charge Close-Packed Model) is 

proposed to interpret anomalous 

capacitive behavior of energy density and 

ionic diffusion observed in one-body, all 

solid-state, sandwich-structured capacitor 

made from reduced graphene oxide films.

RGO – reduced graphene oxide; GO – graphene oxide

rGO external-layer

rGO external-layer

GO intralayer

RGO
GO

RGO



3D Resin Infusion To Simulate Wind 

Blade Manufacturing 

Gurit® - Break Down of a Wind Turbine Blade 

http://www.gurit.com/breakdown-of-a-turbine-blade.aspx The European Wind Energy Association (EWEA) 

<http://www.ewea.org/fileadmin/ewea_documents/do

cuments/publications/factsheets/Factsheets.pdf>

Suresh Advani



• Premature gearbox failure significantly 
increases cost of wind power

• It is unclear how non-ideal conditions affect 
drivetrain loads or reliability

• Smith et al. 2005: failure rates increase with 
wind shear at night

• Blade element theory: determine effect of 
wind shear on mean Mx and bearing load

Implications:
Fatigue limit PLC-A = 184 kN (GRC standard)
Smith et al.: mday = 0.21 and mnight = 0.43
Vave=10 m/s→F = 81 kN, T = 230 kNm@22RPM

Day: Mx = 254 kNm, FPLCA = 52 kN < limit
Night: Mx = 527 kNm, FPLCA = 219 kN > limit

There is a direct and detrimental effect of 
wind shear on drivetrain reliability
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Estimating Wind Turbine Drivetrain Loads 
David Burris



Approach: High-performance computing and analytical tools to understand complex 

multiscale fluid transport/transformation in the environment.

Specific applications:

•Cloud physics and warm rain formation: Effect of air turbulence on collision rates 

and collision efficiency of cloud droplets; impact on warm rain initiation.

•Soil contamination and soil biodiversity: Fate of nanoparticles released to the 

environment; how to model transport and retention of contaminants?

• Industrial processing of multiphase wastes: mixing, resuspension, sedimentation, 

non-Newtonian behavior, and scale-up of particle-laden flow in a controlled mixing 

vessel.

Environmental Multiphase Flows
Lian-Ping Wang


