Update

- What is fatigue?
- Types of Fatigue Loading
- Empirical Data
- Estimating Endurance/Fatigue Strength
- Strategies for Analysis
 - Uniaxial Fully Reversed
 - Uniaxial Fluctuating
 - Multiaxial
Getting Fatigue Data

1) Test a prototype
2) Test the exact material used
3) Published fatigue data
4) Use static data to estimate
Estimating S_e, From Static Data

see page 345 in your book...

<table>
<thead>
<tr>
<th></th>
<th>Steel</th>
<th>Iron</th>
<th>Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$S_{e'} \cong 0.5S_{ut}$</td>
<td>$S_{e'} \cong 0.4S_{ut}$</td>
<td>$S_{f'{@5E8}} \cong 0.4S{ut}$</td>
</tr>
<tr>
<td></td>
<td>$S_{e'} \cong 100\text{ksi}$</td>
<td>$S_{e'} \cong 24\text{ksi}$</td>
<td>$S_{f'_{@5E8}} \cong 19\text{ksi}$</td>
</tr>
<tr>
<td></td>
<td>for $S_{ut} \leq 200\text{ksi}$</td>
<td>for $S_{ut} \leq 60\text{ksi}$</td>
<td>for $S_{ut} \leq 40\text{ksi}$</td>
</tr>
</tbody>
</table>

BUT, these are all for highly polished, circular rotating beams of a certain size
Correction Factors

\[S_e = C_{load} C_{size} C_{surf} C_{temp} C_{reliab} S_{e}' \]
\[S_f = C_{load} C_{size} C_{surf} C_{temp} C_{reliab} S_{f}' \]

pages 348-353 in your book
Residual Stresses

- Temperature
 - through hardening
 - case hardening

- Surface Treating
 - cold forming
 - shot peening: $C_{\text{surf}}=1$
Constructing Estimated S-N Curves

The material strength at 10^3 cycles, S_m:

\[S_m = 0.9S_{ut} \quad \text{for bending} \]
\[S_m = 0.75S_{ut} \quad \text{for axial loading} \]

The line from \(S_m \) to \(S_e \) or \(S_f \), \(S_n = aN^b \)

or \(\log S_n = \log a + b \log N \)
Constructing S-N Curves

\[S_n = a N^b \]

where \(z = \log N_1 - \log N_2 \)

\[b = -\frac{1}{z} \log \left(\frac{S_m}{S_e} \right) \]

\[\log a = \log S_m - b \log N_1 = \log S_m - 3b \]
Fatigue Stress Concentration

\[K_f = 1 + q(K_f-1) \]

\[q = \frac{1}{1 + \sqrt[\frac{1}{n}]} \]

- \(q \) – notch sensitivity
- Function of material, \(S_{ut} \), and notch radius
Update

- What is fatigue?
- Types of Fatigue Loading
- Empirical Data
- Estimating Endurance/Fatigue Strength
- Strategies for Analysis
 - Uniaxial Fully Reversed
 - Uniaxial Fluctuating
 - Multiaxial

\[\sigma_m = 0 \quad \sigma_m \neq 0 \]
Uniaxial, Fully Reversed Strategy
Loading & Stress Half

N (umber of cycles) Fluctuating Load (F_a)

Tentative Material Tentative Design

K_t K_f

σ_a (nominal)

σ_1, σ_2, σ_3 (principal)

σ´ (von Mises)
Uniaxial, Fully Reversed Strategy
Fatigue Half

S_e or S_f

C_{load}
C_{surf}
C_{size}
C_{temp}
C_{reliab}

S_e or S_f

Estimated S-N Curve
Uniaxial Fully Reversed Strategy

N (umber of cycles) → Tentative Material → K_f

Fluctuating Load (F_a) → Tentative Design → σ_a (nominal) → $\sigma_1, \sigma_2, \sigma_3$ (principal) → σ' (von Mises)

S_n = Fatigue strength at n cycles;
σ' = largest von Mises alternating stress;
$N_f = \frac{S_n}{\sigma'}$

S_e or S_f

Estimated S-N Curve

C_{load}, C_{surf}, C_{size}, C_{temp}, C_{reliab}