

Clean Energy and Environment Research

Mechanical Engineering University of Delaware

ME Faculty Conducting Clean Energy and Environmental Research

Fuel Cells, Batteries, and Supercapacitors

Wind Energy

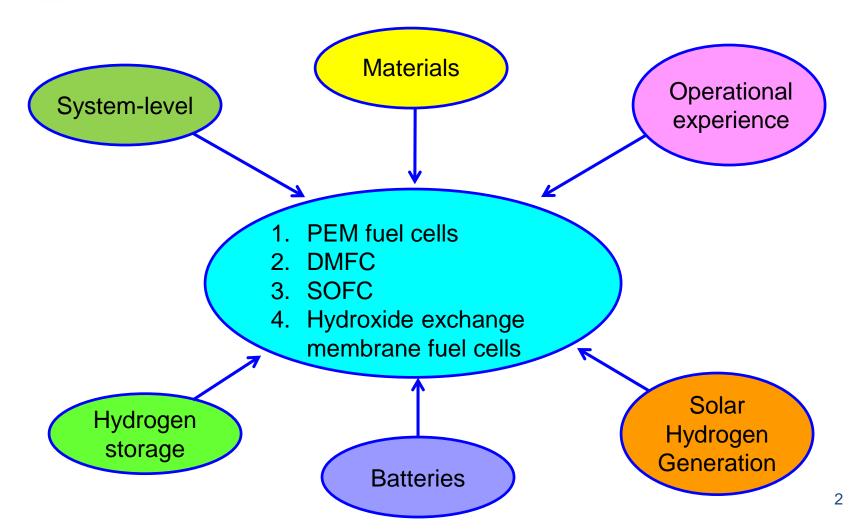
Advani

Burris

Prasad

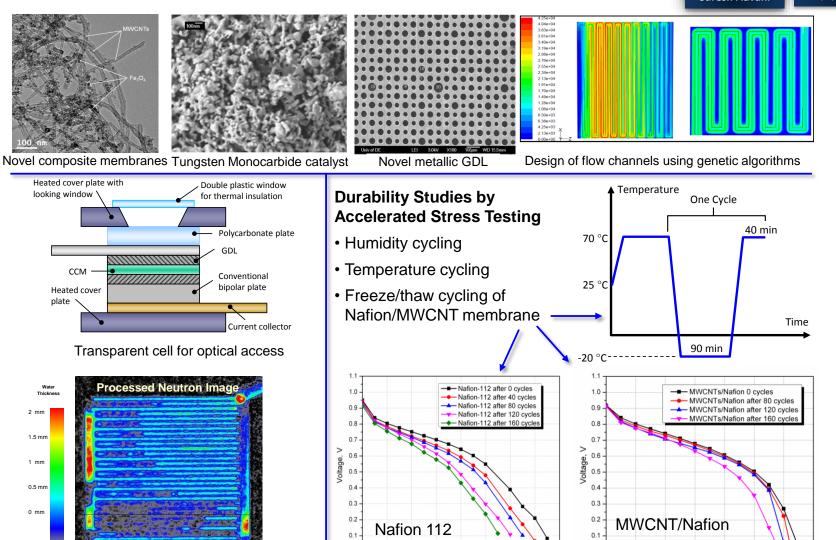
Schwartz

Environment



1

Center for Fuel Cell Research Director: Ajay Prasad



Novel Materials for PEM Fuel Cells

Current Density, A/cm²

0.0

0.2

0.8

Current Density, A/cm²

0.6

1.0

1.2

1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Experimental Materials Characterization

Nano-structural models

Mechanics of Fuel Cell Membranes

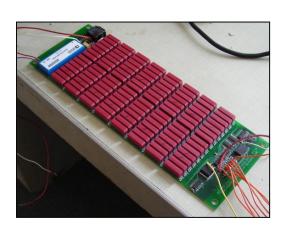
Bipolar Plate 20 [A] Load Frame Experimental at 3.3E-3s Gas Diffusion Mode 25°C,30%RH 16 Load Cell Elec rôvder [rue Stress [MPa] 12 45°C,50%R **PFSA Membrane** Chamber 65°C,70%RH 80°C,90%RH 0.05 0.15 0.20 0.00 0.10 True Strain Numerical in-situ models And Results [A] In-plane stress after clamping 300 Model k = 0.8 ϕ . -0.50 -0.60 -0.65 -0.70 -0.80 Model k = 1.0 ϕ d 250 Exp. Data T=25 °C Exp. Data T=45 °C [B] Maximum in-plane compressive stress after hydration Young's Modulus, E [MPa] Exp. Data T=65 °C -5.20 -5.70 -6.20 -6.75 -7.30 200 Exp. Data T=85 °C 150 [C] In-plane stress at the end of hold at high humidity 100 Aeff [D] Maximum in-plane tensile stress after dehydration 50 ds 4.20
3.00
1.80
0.50
0.75
2.00 Polymer d Matrix Water 0 0 MP 0.05 0.1 0.15 0.2 0.25 0.3 [E] In-plane stress at the end of hold at dry conditions Water Volume Fraction, ϕ_w

Michael Santare

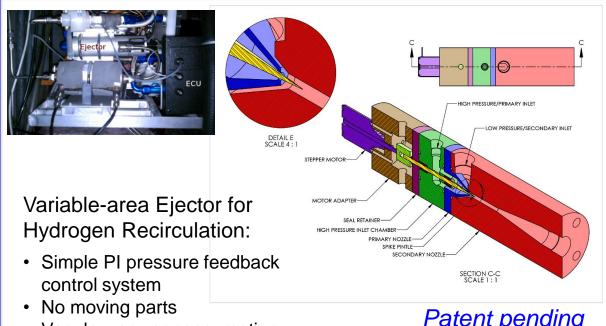
Land

l and

Land


I and

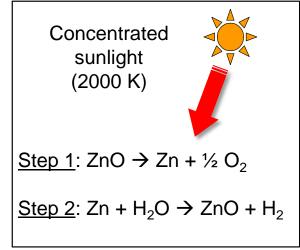
UD Fuel Cell Hybrid Bus Program (2005-present)

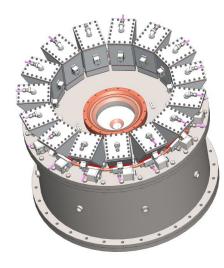

Bus #	Size	Stack	Batteries	Operation
1	22-ft	20 kW	Ni-Cad	2007
2	22-ft	40 kW	Ni-Cad	2009
3	40-ft	60 kW	Li-Ti	2014*
4	40-ft	80 kW	Li-Ti	2014*

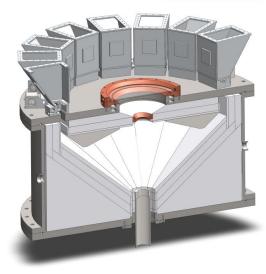
*Expected delivery

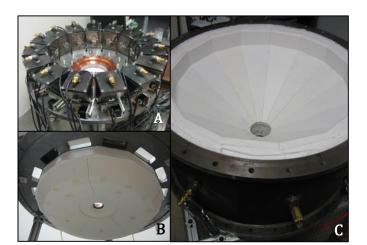
Cell voltage monitoring is an important diagnostic tool for fuel cell stacks and battery systems

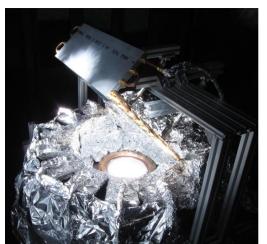
Very low power consumption


Patent pending



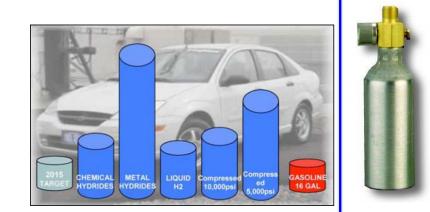

Solar Hydrogen by Thermochemical Cycles

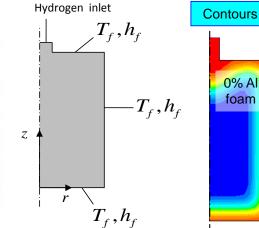


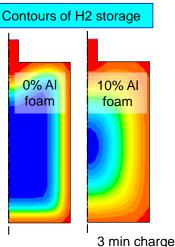


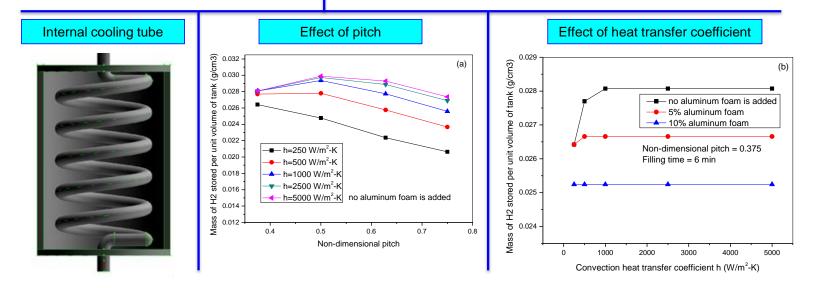
Tested at the Paul Scherrer Institute's high-flux solar simulator in Villigen, Switzerland (May 2012 and March 2013)

 10 xenon-arc lamps delivering 50kW at a peak radiative flux of 11,000 suns.






H₂ Storage with Solid-State Materials



New Capacitive Mechanism for Energy Storage

Voltage (V)

Specific Capacitance

(mF cm⁻²) 0.5 32

1000

2000

3000

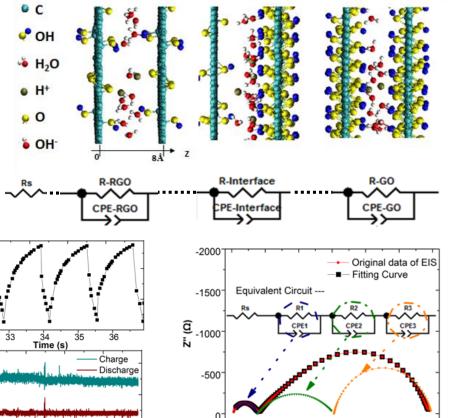
Cycle Number

4000

5000

A new energy storage mechanism (Charge Close-Packed Model) is proposed to interpret anomalous capacitive behavior of energy density and ionic diffusion observed in one-body, all solid-state, sandwich-structured capacitor made from reduced graphene oxide films.

RGO


GO

RGO

GO intralayer

10 um

Charge Close-Packed Model on rGO/GO/rGO

500

1000

1500

Z' (Ω)

2000

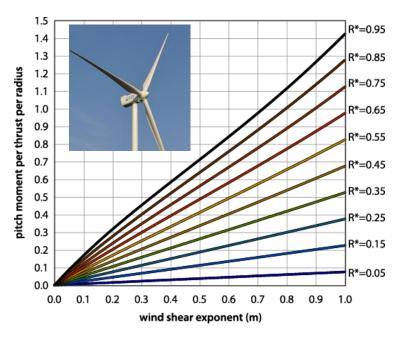
2500

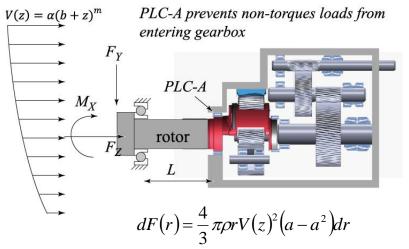
3000

RGO – reduced graphene oxide; GO – graphene oxide

rGO external-layer

rGO external-layer




<http://www.ewea.org/fileadmin/ewea documents/do cuments/publications/factsheets/Factsheets.pdf>

Estimating Wind Turbine Drivetrain Loads

- Premature gearbox failure significantly increases cost of wind power
- It is unclear how non-ideal conditions affect drivetrain loads or reliability
- Smith et al. 2005: failure rates increase with wind shear at night
- Blade element theory: determine effect of wind shear on $mean M_x$ and bearing load

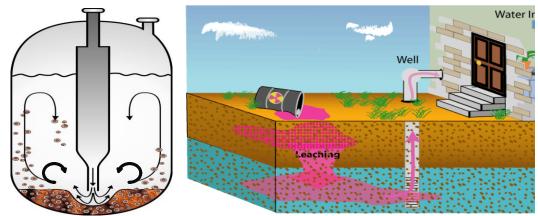
Implications:

Fatigue limit PLC-A = 184 kN (GRC standard) Smith *et al.*: m_{day} = 0.21 and m_{night} = 0.43 V_{ave} =10 m/s \rightarrow *F* = 81 kN, *T* = 230 kNm@22RPM

Day: $M_x = 254$ kNm, $F_{PLCA} = 52$ kN < limit **Night:** $M_x = 527$ kNm, $F_{PLCA} = 219$ kN > limit

There is a direct and detrimental effect of wind shear on drivetrain reliability

Environmental Multiphase Flows



Approach: High-performance computing and analytical tools to understand complex multiscale fluid transport/transformation in the environment.

Specific applications:

- Cloud physics and warm rain formation: Effect of air turbulence on collision rates and collision efficiency of cloud droplets; impact on warm rain initiation.
- Soil contamination and soil biodiversity: Fate of nanoparticles released to the environment; how to model transport and retention of contaminants?
- Industrial processing of multiphase wastes: mixing, resuspension, sedimentation, non-Newtonian behavior, and scale-up of particle-laden flow in a controlled mixing vessel.

